viernes, 15 de agosto de 2014

Regla De Cramer!

La regla de Cramer se aplica para resolver sistemas de ecuaciones lineales que cumplan las siguientes condiciones:
 1  El número de ecuaciones es igual al número de incógnitas.
 2  El determinante de la matriz de los coeficientes es distinto de cero.

Ejemplo:

Ejemplo de la resolución de un sistema simple de 2x2:
Dado
3x+1y = 9\,
2x+3y = 13\,
que matricialmente es:
\begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}=\begin{bmatrix} 9 \\ 13 \end{bmatrix}
x e y pueden ser resueltos usando la regla de Cramer
x = \frac { \begin{vmatrix} 9 & 1 \\ 13 & 3 \end{vmatrix} } { \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} } = { 9*3 - 1*13 \over 3*3 - 1*2} = 2
y = \frac { \begin{vmatrix} 3 & 9 \\ 2 & 13 \end{vmatrix} } { \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} } = { 3*13 - 9*2 \over 3*3 - 1*2} = 3

No hay comentarios:

Publicar un comentario